Influence of real-world environments on the motion of catalytic bubble-propelled micromotors.

نویسندگان

  • Guanjia Zhao
  • Hong Wang
  • Bahareh Khezri
  • Richard D Webster
  • Martin Pumera
چکیده

Self-propelled autonomous micromachines have recently been tasked to carry out various roles in real environments. In this study, we expose the microjets to various types of water that are present in the real world, examples include tap water, rain water, lake water and sea water, and we sought to investigate their behaviors under real world conditions. We observed that the viability and mobility of the catalytic bubble jet engines are strongly influenced by the type of environmental water sample. Amongst the four water samples tested, the seawater sample exhibits the strongest influence, completely disabling any motions arising from the microjets. The motion of the microjets is also reduced in tap water, which contains large quantities of inorganic ions that have been purposely introduced into tap water via processing in water treatment plants. Lake water and rain water samples exhibited the least influence on the microjet's motion. All of the four water samples were also characterized by determining their ion compositions and conductivities, and we will show that there is a distinct correlation between the reduced mobility of the microjets with the ion content of the water found in real environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors

Bubble-propelled catalytic micromotors have recently been attracting much attention. A bubble-propulsion mechanism has the advantage of producing a stronger force and higher speed than other mechanisms for catalytic micromotors, but the nature of the fluctuated bubble generation process affects the motions of the micromotors, making it difficult to control their motions. Thus, understanding of ...

متن کامل

Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble...

متن کامل

Poisoning of bubble propelled catalytic micromotors: the chemical environment matters

Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as w...

متن کامل

Challenges of the movement of catalytic micromotors in blood.

Catalytic microjet bubble-propelled engines have attracted a large amount of interest for their potential applications in biomedicine, environmental sciences and natural resources discovery. One of the current efforts in this field is focused on the search of biocompatible fuels. However, only a minimal amount of effort has been made to assess the challenges facing the movement of such devices ...

متن کامل

Bubble-propelled micromotors for enhanced transport of passive tracers.

Fluid convection and mixing induced by bubble-propelled tubular microengines are characterized using passive microsphere tracers. Enhanced transport of the passive tracers by bubble-propelled micromotors, indicated by their mean squared displacement (MSD), is dramatically larger than that observed in the presence of catalytic nanowires and Janus particle motors. Bubble generation is shown to pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 13 15  شماره 

صفحات  -

تاریخ انتشار 2013